Linking genotype to phenotype in multi-omics data of small sample

Author:

Guo XinpengORCID,Song Yafei,Liu Shuhui,Gao Meihong,Qi Yang,Shang Xuequn

Abstract

Abstract Background Genome-wide association studies (GWAS) that link genotype to phenotype represent an effective means to associate an individual genetic background with a disease or trait. However, single-omics data only provide limited information on biological mechanisms, and it is necessary to improve the accuracy for predicting the biological association between genotype and phenotype by integrating multi-omics data. Typically, gene expression data are integrated to analyze the effect of single nucleotide polymorphisms (SNPs) on phenotype. Such multi-omics data integration mainly follows two approaches: multi-staged analysis and meta-dimensional analysis, which respectively ignore intra-omics and inter-omics associations. Moreover, both approaches require omics data from a single sample set, and the large feature set of SNPs necessitates a large sample size for model establishment, but it is difficult to obtain multi-omics data from a single, large sample set. Results To address this problem, we propose a method of genotype-phenotype association based on multi-omics data from small samples. The workflow of this method includes clustering genes using a protein-protein interaction network and gene expression data, screening gene clusters with group lasso, obtaining SNP clusters corresponding to the selected gene clusters through expression quantitative trait locus data, integrating SNP clusters and corresponding gene clusters and phenotypes into three-layer network blocks, analyzing and predicting based on each block, and obtaining the final prediction by taking the average. Conclusions We compare this method to others using two datasets and find that our method shows better results in both cases. Our method can effectively solve the prediction problem in multi-omics data of small sample, and provide valuable resources for further studies on the fusion of more omics data.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3