PretiMeth: precise prediction models for DNA methylation based on single methylation mark

Author:

Tang Jianxiong,Zou Jianxiao,Zhang Xiaoran,Fan Mei,Tian Qi,Fu Shuyao,Gao Shihong,Fan Shicai

Abstract

Abstract Background The computational prediction of methylation levels at single CpG resolution is promising to explore the methylation levels of CpGs uncovered by existing array techniques, especially for the 450 K beadchip array data with huge reserves. General prediction models concentrate on improving the overall prediction accuracy for the bulk of CpG loci while neglecting whether each locus is precisely predicted. This leads to the limited application of the prediction results, especially when performing downstream analysis with high precision requirements. Results Here we reported PretiMeth, a method for constructing precise prediction models for each single CpG locus. PretiMeth used a logistic regression algorithm to build a prediction model for each interested locus. Only one DNA methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted was applied in the model. We found that PretiMeth outperformed other algorithms in the prediction accuracy, and kept robust across platforms and cell types. Furthermore, PretiMeth was applied to The Cancer Genome Atlas data (TCGA), the intensive analysis based on precise prediction results showed that several CpG loci and genes (differentially methylated between the tumor and normal samples) were worthy for further biological validation. Conclusion The precise prediction of single CpG locus is important for both methylation array data expansion and downstream analysis of prediction results. PretiMeth achieved precise modeling for each CpG locus by using only one significant feature, which also suggested that our precise prediction models could be probably used for reference in the probe set design when the DNA methylation beadchip update. PretiMeth is provided as an open source tool via https://github.com/JxTang-bioinformatics/PretiMeth.

Funder

Sichuan Science and Technology Program

the National Natural Science Foundation of China

Sichuan Province Youth Science and Technology Innovation Team

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3