Transcriptome analysis of genes and pathways associated with metabolism in Scylla paramamosain under different light intensities during indoor overwintering

Author:

Li Na,Zhou Junming,Wang Huan,Mu Changkao,Shi Ce,Liu Lei,Wang ChunlinORCID

Abstract

Abstract Background Scylla paramamosain is one of the commercially crucial marine crustaceans belonging to the genus Scylla, which is commonly distributed along the coasts of China, Vietnam, and Japan. Genomic and transcriptomic data are scarce for the mud crab. Light intensity is one of the ecological factors that affect S. paramamosain during indoor overwintering. To understand the energy metabolism mechanism adapted to light intensity, we analyzed the transcriptome of S. paramamosain hepatopancreas in response to different light intensities (0, 1.43, 40.31 μmol·m− 2·s− 1). Results A total of 5052 differentially expressed genes were identified in low light group (LL group, 3104 genes were up-regulated and 1948 genes were down-regulated). A total of 7403 differentially expressed genes were identified in high light group (HL group, 5262 genes were up-regulated and 2141 genes were down-regulated). S. paramamosain adapts to different light intensity environments through the regulation of amino acids, fatty acids, carbon and energy metabolism. Different light intensities had a strong impact on the energy generation of S. paramamosain by influencing oxygen consumption rate, aerobic respiration, glycolysis/gluconeogenesis pathway, the citrate cycle (TCA cycle) and fatty acid degradation. Conclusion Low light is more conducive to the survival of S. paramamosain, which needs to produce and consume relatively less energy to sustain physiological activities. In contrast, S. paramamosain produced more energy to adapt to the pressure of high light intensities. The findings of the study add to the knowledge of regulatory mechanisms related to S. paramamosain metabolism under different light intensities.

Funder

Collaborative Innovation Center of Major Machine Manufacturing in Liaoning

Basic Public Welfare Research Program of Zhejiang Province

Major Sci & Tech Special Project of Zhejiang Province

Ministry of Agriculture of China & China Agriculture Research System

the K. C. Wong Magna Fund in Ningbo University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3