Identification and validation of a major QTL for kernel length in bread wheat based on two F3 biparental populations

Author:

Xie Xinlin,Li Shuiqin,Liu Hang,Xu Qiang,Tang Huaping,Mu Yang,Deng Mei,Jiang Qiantao,Chen Guoyue,Qi Pengfei,Li Wei,Pu Zhien,Ahsan Habib ,Wei Yuming,Zheng Youliang,Lan Xiujin,Ma Jian

Abstract

Abstract Background High yield and quality are essential goals of wheat (Triticum aestivum L.) breeding. Kernel length (KL), as a main component of kernel size, can indirectly change kernel weight and then affects yield. Identification and utilization of excellent loci in wheat genetic resources is of great significance for cultivating high yield and quality wheat. Genetic identification of loci for KL has been performed mainly through genome-wide association study in natural populations or QTL mapping based on genetic linkage map in high generation populations. Results In this study, an F3 biparental population derived from the cross between an EMS mutant BLS1 selected from an EMS-induced wheat genotype LJ2135 (derived from the hybrid progeny of a spelt wheat (T. spelta L.) and a common wheat) mutant bank and a local breeding line 99E18 was used to rapidly identify loci controlling KL based on Bulked Segregant Analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array. The highest ratio of polymorphic SNPs was located on chromosome 4A. Linkage map analysis showed that 33 Kompetitive Allele Specific PCR markers were linked to the QTL for KL (Qkl.sicau-BLE18-4A) identified in three environments as well as the best linear unbiased prediction (BLUP) dataset. This QTL explained 10.87—19.30% of the phenotypic variation. Its effect was successfully confirmed in another F3 population with the two flanking markers KASP-AX-111536305 and KASP-AX-110174441. Compared with previous studies and given that the of BLS1 has the genetic background of spelt wheat, the major QTL was likely a new one. A few of predicted genes related to regulation of kernel development were identified in the interval of the detected QTL. Conclusion A major, novel and stable QTL (Qkl.sicau-BLE18-4A) for KL was identified and verified in two F3 biparental populations across three environments. Significant relationships among KL, kernel width (KW) and thousand kernel weight (TKW) were identified. Four predicted genes related to kernel growth regulation were detected in the interval of Qkl.sicau-BLE18-4A. Furthermore, this study laid foundation on subsequent fine mapping work and provided a possibility for breeding of elite wheat varieties.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3