Abstract
Abstract
Background
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis, or Johne’s disease (JD), an incurable bovine disease. The evidence for susceptibility to MAP disease points to multiple interacting factors, including the genetic predisposition to a dysregulation of the immune system. The endemic situation in cattle populations can be in part explained by a genetic susceptibility to MAP infection. In order to identify the best genetic improvement strategy that will lead to a significant reduction of JD in the population, we need to understand the link between genetic variability and the biological systems that MAP targets in its assault to dominate macrophages. MAP survives in macrophages where it disseminates. We used next-generation RNA (RNA-Seq) sequencing to study of the transcriptome in response to MAP infection of the macrophages from cows that have been naturally infected and identified as positive for JD (JD (+); n = 22) or negative for JD (healthy/resistant, JD (−); n = 28). In addition to identifying genetic variants from RNA-seq data, SNP variants were also identified using the Bovine SNP50 DNA chip.
Results
The complementary strategy allowed the identification of 1,356,248 genetic variants, including 814,168 RNA-seq and 591,220 DNA chip variants. Annotation using SnpEff predicted that the 2435 RNA-seq genetic variants would produce high functional effect on known genes in comparison to the 33 DNA chip variants. Significant variants from JD(+/−) macrophages were identified by genome-wide association study and revealed two quantitative traits loci: BTA4 and 11 at (P < 5 × 10− 7). Using BovineMine, gene expression levels together with significant genomic variants revealed pathways that potentially influence JD susceptibility, notably the energy-dependent regulation of mTOR by LKB1-AMPK and the metabolism of lipids.
Conclusion
In the present study, we succeeded in identifying genetic variants in regulatory pathways of the macrophages that may affect the susceptibility of cows that are healthy/resistant to MAP infection. RNA-seq provides an unprecedented opportunity to investigate gene expression and to link the genetic variations to biological pathways that MAP normally manipulate during the process of killing macrophages. A strategy incorporating functional markers into genetic selection may have a considerable impact in improving resistance to an incurable disease. Integrating the findings of this research into the conventional genetic selection program may allow faster and more lasting improvement in resistance to bovine paratuberculosis in dairy cattle.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Agriculture and Agri-Food Canada
Publisher
Springer Science and Business Media LLC
Reference101 articles.
1. Tiwari A, VanLeeuwen JA, McKenna SLB, Keefe GP, Barkema HW. Johne’s disease in Canada: part I: clinical symptoms, pathophysiology, diagnosis, and prevalence in dairy herds. Can Vet J. 2006;47(9):874–82.
2. Whittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S, Arrigoni N, Juste R, Saez JL, Dhand N, et al. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res. 2019;15(1):198.
3. Stabel JR. Johne's disease: a hidden threat. J Dairy Sci. 1998;81(1):283–8.
4. Corbett CS, Naqvi SA, Bauman CA, De Buck J, Orsel K, Uehlinger F, Kelton DF, Barkema HW. Prevalence of Mycobacterium avium ssp. paratuberculosis infections in Canadian dairy herds. J Dairy Sci. 2018;101(12):11218–28.
5. Lombard JE, Gardner IA, Jafarzadeh SR, Fossler CP, Harris B, Capsel RT, Wagner BA, Johnson WO. Herd-level prevalence of Mycobacterium avium subsp. paratuberculosis infection in United States dairy herds in 2007. Prev Vet Med. 2013;108(2–3):234–8.