Genome-wide analysis of the GLP gene family and overexpression of GLP1-5–1 to promote lignin accumulation during early somatic embryo development in Dimocarpus longan

Author:

Li Zhuoyun,Fu Zhuoran,Zhang Shuting,Zhang Xueying,Xue Xiaodong,Chen Yukun,Zhang Zihao,Lai Zhongxiong,Lin Yuling

Abstract

AbstractLongan (Dimocarpus longan Lour.) is an economically important subtropical fruit tree. Its fruit quality and yield are affected by embryo development. As a plant seed germination marker gene, the germin-like protein (GLP) gene plays an important role in embryo development. However, the mechanism underlying the role of the GLP gene in somatic embryos is still unclear. Therefore, we conducted genome-wide identification of the longan GLP (DlGLP) gene and preliminarily verified the function of DlGLP1-5–1. Thirty-five genes were identified as longan GLP genes and divided into 8 subfamilies. Based on transcriptome data and qRT‒PCR results, DlGLP genes exhibited the highest expression levels in the root, and the expression of most DlGLPs was upregulated during the early somatic embryogenesis (SE) in longan and responded to high temperature stress and 2,4-D treatment; eight DlGLP genes were upregulated under MeJA treatment, and four of them were downregulated under ABA treatment. Subcellular localization showed that DlGLP5-8–2 and DlGLP1-5–1 were located in the cytoplasm and extracellular stroma/chloroplast, respectively. Overexpression of DIGLP1-5–1 in the globular embryos (GEs) of longan promoted the accumulation of lignin and decreased the H2O2 content by regulating the activities of ROS-related enzymes. The results provide a reference for the functional analysis of DlGLPs and related research on improving lignin accumulation in the agricultural industry through genetic engineering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Constructions of Plateau Discipline of Fujian Province

Technology Innovation Fund of Fujian agriculture and forestry university

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3