Sequencing accuracy and systematic errors of nanopore direct RNA sequencing

Author:

Liu-Wei Wang,van der Toorn Wiep,Bohn Patrick,Hölzer Martin,Smyth Redmond P.,von Kleist Max

Abstract

Abstract Background Direct RNA sequencing (dRNA-seq) on the Oxford Nanopore Technologies (ONT) platforms can produce reads covering up to full-length gene transcripts, while containing decipherable information about RNA base modifications and poly-A tail lengths. Although many published studies have been expanding the potential of dRNA-seq, its sequencing accuracy and error patterns remain understudied. Results We present the first comprehensive evaluation of sequencing accuracy and characterisation of systematic errors in dRNA-seq data from diverse organisms and synthetic in vitro transcribed RNAs. We found that for sequencing kits SQK-RNA001 and SQK-RNA002, the median read accuracy ranged from 87% to 92% across species, and deletions significantly outnumbered mismatches and insertions. Due to their high abundance in the transcriptome, heteropolymers and short homopolymers were the major contributors to the overall sequencing errors. We also observed systematic biases across all species at the levels of single nucleotides and motifs. In general, cytosine/uracil-rich regions were more likely to be erroneous than guanines and adenines. By examining raw signal data, we identified the underlying signal-level features potentially associated with the error patterns and their dependency on sequence contexts. While read quality scores can be used to approximate error rates at base and read levels, failure to detect DNA adapters may be a source of errors and data loss. By comparing distinct basecallers, we reason that some sequencing errors are attributable to signal insufficiency rather than algorithmic (basecalling) artefacts. Lastly, we generated dRNA-seq data using the latest SQK-RNA004 sequencing kit released at the end of 2023 and found that although the overall read accuracy increased, the systematic errors remain largely identical compared to the previous kits. Conclusions As the first systematic investigation of dRNA-seq errors, this study offers a comprehensive overview of reproducible error patterns across diverse datasets, identifies potential signal-level insufficiency, and lays the foundation for error correction methods.

Funder

H2020 Marie Skłodowska-Curie Actions

Bundesministerium für Bildung und Forschung

Robert Koch-Institut

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3