Low-cost and clinically applicable copy number profiling using repeat DNA
-
Published:2022-08-17
Issue:1
Volume:23
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Abujudeh SamORCID, Zeki Sebastian S., van Lanschot Meta C.J., Pusung Mark, Weaver Jamie M.J., Li Xiaodun, Noorani Ayesha, Metz Andrew J., Bornschein Jan, Bower Lawrence, Miremadi Ahmad, Fitzgerald Rebecca C., Morrissey Edward R., Lynch Andy G.
Abstract
Abstract
Background
Somatic copy number alterations (SCNAs) are an important class of genomic alteration in cancer. They are frequently observed in cancer samples, with studies showing that, on average, SCNAs affect 34% of a cancer cell’s genome. Furthermore, SCNAs have been shown to be major drivers of tumour development and have been associated with response to therapy and prognosis. Large-scale cancer genome studies suggest that tumours are driven by somatic copy number alterations (SCNAs) or single-nucleotide variants (SNVs). Despite the frequency of SCNAs and their clinical relevance, the use of genomics assays in the clinic is biased towards targeted gene panels, which identify SNVs but provide limited scope to detect SCNAs throughout the genome. There is a need for a comparably low-cost and simple method for high-resolution SCNA profiling.
Results
We present conliga, a fully probabilistic method that infers SCNA profiles from a low-cost, simple, and clinically-relevant assay (FAST-SeqS). When applied to 11 high-purity oesophageal adenocarcinoma samples, we obtain good agreement (Spearman’s rank correlation coefficient, rs=0.94) between conliga’s inferred SCNA profiles using FAST-SeqS data (approximately £14 per sample) and those inferred by ASCAT using high-coverage WGS (gold-standard). We find that conliga outperforms CNVkit (rs=0.89), also applied to FAST-SeqS data, and is comparable to QDNAseq (rs=0.96) applied to low-coverage WGS, which is approximately four-fold more expensive, more laborious and less clinically-relevant. By performing an in silico dilution series experiment, we find that conliga is particularly suited to detecting SCNAs in low tumour purity samples. At two million reads per sample, conliga is able to detect SCNAs in all nine samples at 3% tumour purity and as low as 0.5% purity in one sample. Crucially, we show that conliga’s hidden state information can be used to decide when a sample is abnormal or normal, whereas CNVkit and QDNAseq cannot provide this critical information.
Conclusions
We show that conliga provides high-resolution SCNA profiles using a convenient, low-cost assay. We believe conliga makes FAST-SeqS a more clinically valuable assay as well as a useful research tool, enabling inexpensive and fast copy number profiling of pre-malignant and cancer samples.
Funder
Wellcome Trust Cancer Research UK
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference48 articles.
1. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Henry KTM, Pinchback RM, Ligon AH, Cho Y. -j., Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tsao M. -s., Demichelis F, Rubin MA, Janne PA, Tabernero J, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. The landscape of somatic copy-number alteration across human cancers. Nature. 2010; 463(February):899–905. https://doi.org/10.1038/nature08822. 2. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C. -z., Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013; 45(10):1134–40. https://doi.org/10.1038/ng.2760. 3. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013; 45(10):1127–33. https://doi.org/10.1038/ng.2762. 4. Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, Khurana E, Waszak S, Korbel JO, Haber JE, Imielinski M, PCAWG Structural Variation Working Group, Weischenfeldt J, Beroukhim R, Campbell PJ, PCAWG Consortium. Patterns of somatic structural variation in human cancer genomes. Nature. 2020; 578:112–21. 5. Harbers L, Agostini F, Nicos M, Poddighe D, Bienko M, Crosetto N. Somatic Copy Number Alterations in Human Cancers: An Analysis of Publicly Available Data From The Cancer Genome Atlas. Front Oncol. 2021; 11(July):1–11. https://doi.org/10.3389/fonc.2021.700568.
|
|