Author:
Li Guanghui,Bai Peihao,Liang Cheng,Luo Jiawei
Abstract
Abstract
Background
Long noncoding RNAs (lncRNAs) are integral to a plethora of critical cellular biological processes, including the regulation of gene expression, cell differentiation, and the development of tumors and cancers. Predicting the relationships between lncRNAs and diseases can contribute to a better understanding of the pathogenic mechanisms of disease and provide strong support for the development of advanced treatment methods.
Results
Therefore, we present an innovative Node-Adaptive Graph Transformer model for predicting unknown LncRNA-Disease Associations, named NAGTLDA. First, we utilize the node-adaptive feature smoothing (NAFS) method to learn the local feature information of nodes and encode the structural information of the fusion similarity network of diseases and lncRNAs using Structural Deep Network Embedding (SDNE). Next, the Transformer module is used to capture potential association information between the network nodes. Finally, we employ a Transformer module with two multi-headed attention layers for learning global-level embedding fusion. Network structure coding is added as the structural inductive bias of the network to compensate for the missing message-passing mechanism in Transformer. NAGTLDA achieved an average AUC of 0.9531 and AUPR of 0.9537 significantly higher than state-of-the-art methods in 5-fold cross validation. We perform case studies on 4 diseases; 55 out of 60 associations between lncRNAs and diseases have been validated in the literatures. The results demonstrate the enormous potential of the graph Transformer structure to incorporate graph structural information for uncovering lncRNA-disease unknown correlations.
Conclusions
Our proposed NAGTLDA model can serve as a highly efficient computational method for predicting biological information associations.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.
2. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.
3. Wang Kevin C, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.
4. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.
5. Chen X, Yan CC, Zhang X, et al. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform. 2016;22:558–76.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献