Author:
Ren Lingtong,Liu Anfang,Wang Qigui,Wang Honggan,Dong Deqiang,Liu Lingbin
Abstract
Abstract
Background
Muscle is the predominant portion of any meat product, and growth performance and product quality are the core of modern breeding. The embryonic period is highly critical for muscle development, the number, shape and structure of muscle fibers are determined at the embryonic stage. Herein, we performed transcriptome analysis to reveal the law of muscle development in the embryonic stage of Chengkou Mountain Chicken at embryonic days (E) 12, 16, 19, 21.
Results
Diameter and area of muscle fibers exhibited significant difference at different embryonic times(P < 0.01). A total of 16,330 mRNAs transcripts were detected, including 109 novel mRNAs transcripts. By comparing different embryonic muscle development time points, 2,262 in E12vsE16, 5,058 in E12vsE19, 6139 in E12vsE21, 1,282 in E16vsE19, 2,920 in E16vsE21, and 646 in E19vsE21differentially expressed mRNAs were identified. It is worth noting that 7,572 mRNAs were differentially expressed. The time-series expression profile of differentially expressed genes (DEGs) showed that the rising and falling expression trends were significantly enriched. The significant enrichment trends included 3,150 DEGs. GO enrichment analysis provided three significantly enriched categories of significantly enriched differential genes, including 65 cellular components, 88 molecular functions, and 453 biological processes. Through KEGG analysis, we explored the biological metabolic pathways involved in differentially expressed genes. A total of 177 KEGG pathways were enriched, including 19 significant pathways, such as extracellular matrix-receptor interactions. Similarly, numerous pathways related to muscle development were found, including the Wnt signaling pathway (P < 0.05), MAPK signalingpathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and mTOR signaling pathway. Among the differentially expressed genes, we selected those involved in developing 4-time points; notably, up-regulated genes included MYH1F, SLC25A12, and HADHB, whereas the down-regulated genes included STMN1, VASH2, and TUBAL3.
Conclusions
Our study explored the embryonic muscle development of the Chengkou Mountain Chicken. A large number of DEGs related to muscle development have been identified ,and validation of key genes for embryonic development and preliminary explanation of their role in muscle development. Overall, this study broadened our current understanding of the phenotypic mechanism for myofiber formation and provides valuable information for improving chicken quality.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Chongqing Natural Science Foundation
the Undergraduate Innovation and Entrepreneurship Training Program of Southwest University
Publisher
Springer Science and Business Media LLC