A study of genetic variants associated with skin traits in the Vietnamese population

Author:

Hoang Tham Hong,Vu Duc Minh,Vu Giang Minh,Nguyen Thien Khac,Do Nguyet Minh,Duong Vinh Chi,Pham Thang Luong,Tran Mai Hoang,Khanh Nguyen Ly Thi,Han Han Thi Tuong,Can Thu-Thuy,Pham Thai Hong,Pham Tho Duc,Nguyen Thanh Hong,Do Huy Phuoc,Vo Nam S.,Nguyen Xuan-Hung

Abstract

Abstract Background Most skin-related traits have been studied in Caucasian genetic backgrounds. A comprehensive study on skin-associated genetic effects on underrepresented populations such as Vietnam is needed to fill the gaps in the field. Objectives We aimed to develop a computational pipeline to predict the effect of genetic factors on skin traits using public data (GWAS catalogs and whole-genome sequencing (WGS) data from the 1000 Genomes Project-1KGP) and in-house Vietnamese data (WGS and genotyping by SNP array). Also, we compared the genetic predispositions of 25 skin-related traits of Vietnamese population to others to acquire population-specific insights regarding skin health. Methods Vietnamese cohorts of whole-genome sequencing (WGS) of 1008 healthy individuals for the reference and 96 genotyping samples (which do not have any skin cutaneous issues) by Infinium Asian Screening Array-24 v1.0 BeadChip were employed to predict skin-associated genetic variants of 25 skin-related and micronutrient requirement traits in population analysis and correlation analysis. Simultaneously, we compared the landscape of cutaneous issues of Vietnamese people with other populations by assessing their genetic profiles. Results The skin-related genetic profile of Vietnamese cohorts was similar at most to East Asian cohorts (JPT: Fst = 0.036, CHB: Fst = 0.031, CHS: Fst = 0.027, CDX: Fst = 0.025) in the population study. In addition, we identified pairs of skin traits at high risk of frequent co-occurrence (such as skin aging and wrinkles (r = 0.45, p = 1.50e-5) or collagen degradation and moisturizing (r = 0.35, p = 1.1e-3)). Conclusion This is the first investigation in Vietnam to explore genetic variants of facial skin. These findings could improve inadequate skin-related genetic diversity in the currently published database.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3