Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: II: carcass merit traits

Author:

Wang Yining,Zhang Feng,Mukiibi Robert,Chen Liuhong,Vinsky Michael,Plastow Graham,Basarab John,Stothard Paul,Li ChangxiORCID

Abstract

Abstract Background Genome wide association studies (GWAS) were conducted on 7,853,211 imputed whole genome sequence variants in a population of 3354 to 3984 animals from multiple beef cattle breeds for five carcass merit traits including hot carcass weight (HCW), average backfat thickness (AFAT), rib eye area (REA), lean meat yield (LMY) and carcass marbling score (CMAR). Based on the GWAS results, genetic architectures of the carcass merit traits in beef cattle were elucidated. Results The distributions of DNA variant allele substitution effects approximated a bell-shaped distribution for all the traits while the distribution of additive genetic variances explained by single DNA variants conformed to a scaled inverse chi-squared distribution to a greater extent. At a threshold of P-value < 10–5, 51, 33, 46, 40, and 38 lead DNA variants on multiple chromosomes were significantly associated with HCW, AFAT, REA, LMY, and CMAR, respectively. In addition, lead DNA variants with potentially large pleiotropic effects on HCW, AFAT, REA, and LMY were found on chromosome 6. On average, missense variants, 3’UTR variants, 5’UTR variants, and other regulatory region variants exhibited larger allele substitution effects on the traits in comparison to other functional classes. The amounts of additive genetic variance explained per DNA variant were smaller for intergenic and intron variants on all the traits whereas synonymous variants, missense variants, 3’UTR variants, 5’UTR variants, downstream and upstream gene variants, and other regulatory region variants captured a greater amount of additive genetic variance per sequence variant for one or more carcass merit traits investigated. In total, 26 enriched cellular and molecular functions were identified with lipid metabolisms, small molecular biochemistry, and carbohydrate metabolism being the most significant for the carcass merit traits. Conclusions The GWAS results have shown that the carcass merit traits are controlled by a few DNA variants with large effects and many DNA variants with small effects. Nucleotide polymorphisms in regulatory, synonymous, and missense functional classes have relatively larger impacts per sequence variant on the variation of carcass merit traits. The genetic architecture as revealed by the GWAS will improve our understanding on genetic controls of carcass merit traits in beef cattle.

Funder

Alberta Livestock and Meat Agency

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3