A phenomics-based approach for the detection and interpretation of shared genetic influences on 29 biochemical indices in southern Chinese men

Author:

Hu Yanling,Tan Aihua,Yu Lei,Hou Chenyang,Kuang Haofa,Wu Qunying,Su Jinghan,Zhou Qingniao,Zhu Yuanyuan,Zhang Chenqi,Wei Wei,Li Lianfeng,Li Weidong,Huang Yuanjie,Huang Hongli,Xie Xing,Lu Tingxi,Zhang Haiying,Yang Xiaobo,Gao Yong,Li Tianyu,Jiang YonghuaORCID,Mo Zengnan

Abstract

Abstract Background Phenomics provides new technologies and platforms as a systematic phenome-genome approach. However, few studies have reported on the systematic mining of shared genetics among clinical biochemical indices based on phenomics methods, especially in China. This study aimed to apply phenomics to systematically explore shared genetics among 29 biochemical indices based on the Fangchenggang Area Male Health and Examination Survey cohort. Result A total of 1999 subjects with 29 biochemical indices and 709,211 single nucleotide polymorphisms (SNPs) were subjected to phenomics analysis. Three bioinformatics methods, namely, Pearson’s test, Jaccard’s index, and linkage disequilibrium score regression, were used. The results showed that 29 biochemical indices were from a network. IgA, IgG, IgE, IgM, HCY, AFP and B12 were in the central community of 29 biochemical indices. Key genes and loci associated with metabolism traits were further identified, and shared genetics analysis showed that 29 SNPs (P < 10− 4) were associated with three or more traits. After integrating the SNPs related to two or more traits with the GWAS catalogue, 31 SNPs were found to be associated with several diseases (P < 10− 8). Using ALDH2 as an example to preliminarily explore its biological function, we also confirmed that the rs671 (ALDH2) polymorphism affected multiple traits of osteogenesis and adipogenesis differentiation in 3 T3-L1 preadipocytes. Conclusion All these findings indicated a network of shared genetics and 29 biochemical indices, which will help fully understand the genetics participating in biochemical metabolism.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

National Natural Science Foundation of China

the National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Youth Science Foundation of Guangxi Medical University

Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3