Author:
Leung Chi-Ming,Li Dinghua,Xin Yan,Law Wai-Chun,Zhang Yifan,Ting Hing-Fung,Luo Ruibang,Lam Tak-Wah
Abstract
Abstract
Background
Next-generation sequencing (NGS) enables unbiased detection of pathogens by mapping the sequencing reads of a patient sample to the known reference sequence of bacteria and viruses. However, for a new pathogen without a reference sequence of a close relative, or with a high load of mutations compared to its predecessors, read mapping fails due to a low similarity between the pathogen and reference sequence, which in turn leads to insensitive and inaccurate pathogen detection outcomes.
Results
We developed MegaPath, which runs fast and provides high sensitivity in detecting new pathogens. In MegaPath, we have implemented and tested a combination of polishing techniques to remove non-informative human reads and spurious alignments. MegaPath applies a global optimization to the read alignments and reassigns the reads incorrectly aligned to multiple species to a unique species. The reassignment not only significantly increased the number of reads aligned to distant pathogens, but also significantly reduced incorrect alignments. MegaPath implements an enhanced maximum-exact-match prefix seeding strategy and a SIMD-accelerated Smith-Waterman algorithm to run fast.
Conclusions
In our benchmarks, MegaPath demonstrated superior sensitivity by detecting eight times more reads from a low-similarity pathogen than other tools. Meanwhile, MegaPath ran much faster than the other state-of-the-art alignment-based pathogen detection tools (and compariable with the less sensitivity profile-based pathogen detection tools). The running time of MegaPath is about 20 min on a typical 1 Gb dataset.
Funder
Innovative and Technology Fund
General Research Fund
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献