Identification of a major-effect QTL associated with pre-harvest sprouting in cucumber (Cucumis sativus L.) using the QTL-seq method

Author:

Cao Mingming,Li Shuju,Deng Qiang,Wang Huizhe,Yang Ruihuan

Abstract

Abstract Background Cucumber (Cucumis sativus L.) is cultivated worldwide, and it is essential to produce enough high-quality seeds to meet demand. Pre-harvest sprouting (PHS) in cucumber is a critical problem and causes serious damage to seed production and quality. Nevertheless, the genetic basis and molecular mechanisms underlying cucumber PHS remain unclear. QTL-seq is an efficient approach for rapid quantitative trait loci (QTL) identification that simultaneously takes advantage of bulked-segregant analysis (BSA) and whole-genome resequencing. In the present research, QTL-seq analysis was performed to identify QTLs associated with PHS in cucumber using an F2 segregating population. Results Two QTLs that spanned 7.3 Mb on Chromosome 4 and 0.15 Mb on Chromosome 5 were identified by QTL-seq and named qPHS4.1 and qPHS5.1, respectively. Subsequently, SNP and InDel markers selected from the candidate regions were used to refine the intervals using the extended F2 populations grown in the 2016 and 2017 seasons. Finally, qPHS4.1 was narrowed to 0.53 Mb on chromosome 4 flanked by the markers SNP-16 and SNP-24 and was found to explain 19–22% of the phenotypic variation in cucumber PHS. These results reveal that qPHS4.1 is a major-effect QTL associated with PHS in cucumber. Based on gene annotations and qRT-PCR expression analyses, Csa4G622760 and Csa4G622800 were proposed as the candidate genes. Conclusions These results provide novel insights into the genetic mechanism controlling PHS in cucumber and highlight the potential for marker-assisted selection of PHS resistance breeding.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3