Comparative genome and transcriptome analyses reveal innate differences in response to host plants by two color forms of the two-spotted spider mite Tetranychus urticae

Author:

Huo Shi-Mei,Yan Zhi-Chao,Zhang Feng,Chen Lei,Sun Jing-Tao,Hoffmann Ary A.ORCID,Hong Xiao-YueORCID

Abstract

Abstract Background The two-spotted spider mite, Tetranychus urticae, is a major agricultural pest with a cosmopolitan distribution, and its polyphagous habits provide a model for investigating herbivore-plant interactions. There are two body color forms of T. urticae with a different host preference. Comparative genomics and transcriptomics are used here to investigate differences in responses of the forms to host plants at the molecular level. Biological responses of the two forms sourced from multiple populations are also presented. Results We carried out principal component analysis of transcription changes in three red and three green T. urticae populations feeding on their original host (common bean), and three hosts to which they were transferred: cotton, cucumber and eggplant. There were differences among the forms in gene expression regardless of their host plant. In addition, different changes in gene expression were evident in the two forms when responding to the same host transfer. We further compared biological performance among populations of the two forms after feeding on each of the four hosts. Fecundity of 2-day-old adult females showed a consistent difference between the forms after feeding on bean. We produced a 90.1-Mb genome of the red form of T. urticae with scaffold N50 of 12.78 Mb. Transcriptional profiles of genes associated with saliva, digestion and detoxification showed form-dependent responses to the same host and these genes also showed host-specific expression effects. Conclusions Our research revealed that forms of T. urticae differ in host-determined transcription responses and that there is form-dependent plasticity in the transcriptomic responses. These differences may facilitate the extreme polyphagy shown by spider mites, although fitness differences on hosts are also influenced by population differences unrelated to color form.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3