Abstract
Abstract
Background
Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China’s most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12).
Results
We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.
Conclusions
Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.
Funder
The Earmarked Fund for Modern China Wool & CashmereTechnology Research System
The Project of Shandong Province Agricultural Variety Program
National Natural Science Foundation of China
A Project of Shandong Province Higher Educational Science and Technology Program
Publisher
Springer Science and Business Media LLC
Reference80 articles.
1. Anderson F, Pannier L, Pethick DW, Gardner GE. Intramuscular fat in lamb muscle and the impact of selection for improved carcass lean meat yield. Animal. 2015;9(6):1081–90.
2. Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: adipose and muscle stem cells. J Anim Sci. 2015;93(2):457–81.
3. Mohrhauser DA, Taylor AR, Underwood KR, Pritchard RH, Wertz-Lutz AE, Blair AD. The influence of maternal energy status during midgestation on beef offspring carcass characteristics and meat quality. J Anim Sci. 2015;93(2):786–93.
4. Urban T, Mikolasova R, Kuciel J, et al. A study of associations of the HFABP genotypes with fat and meat production of pigs [J]. J Appl Genet. 2002;43(4):505–10.
5. Wang YH, Byrne KA, Reverter A, et al. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle [J]. Mamm Genome. 2005;16(3):201–10.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献