The genomic landscape of Ménière's disease: a path to endolymphatic hydrops

Author:

Fisch Kathleen M.,Rosenthal Sara Brin,Mark Adam,Sasik Roman,Nasamran Chanond A.,Clifford Royce,Derebery M. Jennifer,Boussaty Ely,Jepsen Kristen,Harris Jeffrey,Friedman Rick A.

Abstract

Abstract Background Ménière's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness, roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway discovery and a move towards targeted intervention. This study was a retrospective review of patients with a history of Ménière's disease. Genomic DNA, acquired from saliva samples, was purified and subjected to whole genome sequencing. Results Stringent variant calling, performed on 511 samples passing quality checks, followed by gene-based filtering by recurrence and proximity in molecular interaction networks, led to 481 high priority MD genes. These high priority genes, including MPHOSPH8, MYO18A, TRIOBP, OTOGL, TNC, and MYO6, were previously implicated in hearing loss, balance, and cochlear function, and were significantly enriched in common variant studies of hearing loss. Validation in an independent MD cohort confirmed 82 recurrent genes. Pathway analysis pointed to cell–cell adhesion, extracellular matrix, and cellular energy maintenance as key mediators of MD. Furthermore, the MD-prioritized genes were highly expressed in human inner ear hair cells and dark/vestibular cells, and were differentially expressed in a mouse model of hearing loss. Conclusion By enabling the development of model systems that may lead to targeted therapies and MD screening panels, the genes and variants identified in this study will inform diagnosis and treatment of MD.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3