Author:
Guo Jiaxing,Zhao Dongliang,Gu Chunxiang,Chen Xi,Zhang Xieli,Ju Mengcheng
Abstract
AbstractOwing to the emergence and rapid advances of new-generation information and digitalization technologies, the concept of model-driven digital twin has received widespread attentions and is developing vigorously. Driven by data and simulators, the digital twin can create the virtual twins of physical objects to perform monitoring, simulation, prediction, optimization, and so on. Hence, the application of digital twin can increase efficiency and security of systems by providing reliable model and decision supports. In this paper, we propose a state-aware model learning method to simulate and analyze the lightweight protocol implementations in edge/cloud environments. We introduce the data flow of program execution and network interaction inputs/outputs (I/O) into the extended finite state machine (EFSM) to expand the modeling scope and insight. We aim to calibrate the states and construct an accurate state-machine model using a digital twin based layered approach to reasonably reflect the correlation of a device’s external behavior and internal data. This, in turn, improves our ability to verify the logic and evaluate the security for protocol implementations. This method firstly involves instrumenting the target device to monitor variable activity during its execution. We then employ learning algorithms to produce multiple rounds of message queries. Both the I/O data corresponding to these query sequences and the state calibration information derived from filtered memory variables are obtained through the mapper and execution monitor, respectively. These two aspects of information are combined to dynamically and incrementally construct the protocol’s state machine. We apply this method to develop SALearn and evaluate the effectiveness of SALearn on two lightweight protocol implementations. Our experimental results indicate that SALearn outperforms existing protocol model learning tools, achieving higher learning efficiency and uncovering more interesting states and security issues. In total, we identified two violation scenarios of rekey logic. These situations also reflect the differences in details between different implementations.
Funder
National Natural Science Foundation of China
Science Foundation for the Excellent Youth Scholars of Henan Province
Major Public Welfare Projects in Henan Province
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Ahmad I, Niazy MS, Ziar RA, Khan S (2021) Survey on iot: security threats and applications. J Robot Control (JRC) 2(1):42–46
2. Li W, Wu J, Cao J, Chen N, Zhang Q, Buyya R (2021) Blockchain-based trust management in cloud computing systems: a taxonomy, review and future directions. J Cloud Comput 10(1):1–34
3. Vaezi M, Azari A, Khosravirad SR, Shirvanimoghaddam M, Azari MM, Chasaki D, Popovski P (2022) Cellular, wide-area, and non-terrestrial iot: A survey on 5g advances and the road toward 6g. IEEE Commun Surv Tutorials 24(2):1117–1174
4. Tao F, Xiao B, Qi Q, Cheng J, Ji P (2022) Digital twin modeling. J Manuf Syst 64:372–389
5. VanDerHorn E, Mahadevan S (2021) Digital twin: Generalization, characterization and implementation. Decis Support Syst 145:113524