A user interest community evolution model based on subgraph matching for social networking in mobile edge computing environments

Author:

Jiang Liang,Liu Lu,Yao Jingjing,Shi Leilei

Abstract

AbstractWith the rapid development of mobile edge computing, mobile social networks are gradually infiltrating into our daily lives, in which the communities are an important part of social networks. Internet of People such as online social networks is the next frontier for the Internet of Things. The combination of social networking and mobile edge computing has an important application value and is the development trend of future networks. However, how to detect evolutionary communities accurately and efficiently in dynamic heterogeneous social networks remains a fundamental problem. In this paper, a novel User Interest Community Evolution (UICE) model based on subgraph matching is proposed for accurately detecting the corresponding communities in the evolution of the user interest community. The community evolutionary events can be quickly captured including forming, dissolving, evolving and so on with the introduction of core subgraph. A variant of subgraph matching, called Subgraph Matching with Dynamic Weight (SMDW), is proposed to solve the problem of updating the core subgraph due to the change of core user’s interest when tracking evolutionary communities. Finally, the experiments based on the real datasets have been designed to evaluate the performance of the proposed model by comparing it with the state-of-art methods in this area and complete data processing through the local edge computing layer. The experimental results demonstrate that the UICE model presented in this paper has achieved better accuracy, higher efficiency and better scalability against existing methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

U.K.–Jiangsu 20-20 World Class University Initiative Programme

U.K.–China Knowledge Economy Education Partnership

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Natural Science Research Projects of Jiangsu Higher Education Institutions

National Natural Science Foundation of China Program

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3