A bidirectional DNN partition mechanism for efficient pipeline parallel training in cloud

Author:

Cui Lingyun,Qu Zhihao,Zhang Guomin,Tang Bin,Ye Baoliu

Abstract

AbstractRecently, deep neural networks (DNNs) have shown great promise in many fields while their parameter sizes are rapidly expanding. To break through the computation and memory limitation of a single machine, pipeline model parallelism is proposed for large-scale DNN training by fully utilizing the computation and storage power of the distributed cluster. Cloud data centers can also provide sufficient computing, storage and bandwidth resources. However, most existing approaches apply layer-wise partitioning, which is difficult to obtain an even model partition result because of the large computational overhead discrepancy between DNN layers, resulting in degraded efficiency. To tackle this issue, we propose “Bi-Partition”, a novel partitioning method based on bidirectional partitioning for forward propagation (FP) and backward propagation (BP), which improves the efficiency of the pipeline model parallelism system. By deliberated designing distinct cut positions for FP and BP of DNN training, workers in the pipeline get nearly equal computational loads, and the balanced pipeline fully utilizes the computing resources. Experiments on various DNN models and datasets validate the efficiency of our mechanism, e.g., the training efficiency achieving up to 1.9$$\times$$ × faster than the state-of-the-art method PipeDream.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference32 articles.

1. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Proc of the ICLR. OpenReview.net, Austria

2. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proc. of the IEEE/CVF ICCV. IEEE, Montreal, BC, Canada, p 10012–10022

3. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Proc of the NeurIPS, vol 30. Curran Associates Inc.57, Long Beach, CA, USA

4. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. preprint ArXiv:1609.08144

5. Shoeybi M, Patwary M, Puri R, LeGresley P, Casper J, Catanzaro B (2019) Megatron-LM: Training multi-billion parameter language models using model parallelism. preprint ArXiv:1909.08053

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3