Cloud-SMPC: two-round multilinear maps secure multiparty computation based on LWE assumption

Author:

Luo Yun,Chen Yuling,Li Tao,Tan Chaoyue,Dou Hui

Abstract

AbstractCloud computing has data leakage from all parties, security protection of private data, and existing solutions do not provide a trade-off between security and overhead. With distributed data communication due to data barriers, information interaction security and data computation security have become challenges for secure computing. Combining cloud computing with secure multiparty computation can provide a higher level of data protection while maintaining the benefits of cloud computing. In this case, data can be stored in the cloud and computed through SMPC protocols, thus protecting the privacy and security of the data. However, multiple rounds of information interaction are often required, increasing the communication overhead, and the security strength is limited by the hardness assumption. In this paper, we work to achieve an optimal setting of the number of rounds in secure multi-party computation on the cloud to achieve a sublinear communication overhead and improve the security concept. A 2-round SMPC protocol is constructed in the framework of Universally Composable (UC). A 2-round SMPC protocol is constructed that uses multilinear maps based on the Learning from Errors (LWE) assumption. The participant encodes the input and sends it via broadcast to reduce the interaction, homomorphic computational encoding information for secure access to computational data and secure the SMPC protocol through UC security. This paper extends the participants to multiple parties, reduces the communication rounds to 2, the protocol achieves sublinear communication overhead in poly polynomial time, smaller setup size to poly(k), and static security is achieved.

Funder

National Natural Science Foundation of China

Top Technology Talent Project from Guizhou Education Department

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3