A Neuro-fuzzy approach for user behaviour classification and prediction

Author:

Atta-ur-Rahman ,Dash Sujata,Luhach Ashish Kr.,Chilamkurti Naveen,Baek Seungmin,Nam YunyoungORCID

Abstract

AbstractBig data and cloud computing technology appeared on the scene as new trends due to the rapid growth of social media usage over the last decade. Big data represent the immense volume of complex data that show more details about behaviours, activities, and events that occur around the world. As a result, big data analytics needs to access diverse types of resources within a decreased response time to produce accurate and stable business experimentation that could help make brilliant decisions for organizations in real-time. These developments have spurred a revolutionary transformation in research, inventions, and business marketing. User behaviour analysis for classification and prediction is one of the hottest topics in data science. This type of analysis is performed for several purposes, such as finding users’ interests about a product (for marketing, e-commerce, etc.) or toward an event (elections, championships, etc.) and observing suspicious activities (security and privacy) based on their traits over the Internet. In this paper, a neuro-fuzzy approach for the classification and prediction of user behaviour is proposed. A dataset, composed of users’ temporal logs containing three types of information, namely, local machine, network and web usage logs, is targeted. To complement the analysis, each user’s 360-degree feedback is also utilized. Various rules have been implemented to address the company’s policy for determining the precise behaviour of a user, which could be helpful in managerial decisions. For prediction, a Gaussian Radial Basis Function Neural Network (GRBF-NN) is trained based on the example set generated by a Fuzzy Rule Based System (FRBS) and the 360-degree feedback of the user. The results are obtained and compared with other state-of-the-art schemes in the literature, and the scheme is found to be promising in terms of classification as well as prediction accuracy.

Funder

KIAT

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference44 articles.

1. Curme C, Preis T, Stanley HE, Moat HS (2014) Quantifying the semantics of search behavior before stock market moves. Proc Natl Acad Sci 111(32):11600–11605

2. Pawel W., Mieczyslaw O., & Michal P. (2012). Web user navigation patterns discovery from WWW server log files”, IEEE

3. Yan X, Han J, Afsha R (2003) CloSpan: mining: closed sequential patterns in large datasets, proceedings of the 2003 SIAM international conference on data mining, 166–177

4. Saleh M, SHETTY P, Nisha (2018) Analysis of Web Server Logs to Understand Internet User Behavior and Develop Digital Marketing Strategies. Int J Eng Technol 7(4.41):15–21

5. Ismaeel S, Karim R, Miri A (2018) Proactive dynamic virtual-machine consolidation for energy conservation in cloud data centers. J Cloud Comput 7(10):2018

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3