Flexible computation offloading in a fuzzy-based mobile edge orchestrator for IoT applications

Author:

Nguyen VanDung,Khanh Tran Trong,Nguyen Tri D. T.,Hong Choong Seon,Huh Eui-Nam

Abstract

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3