Job scheduling problem in fog-cloud-based environment using reinforced social spider optimization

Author:

Kuppusamy P.,Kumari N. Marline Joys,Alghamdi Wael Y.,Alyami Hashem,Ramalingam Rajakumar,Javed Abdul Rehman,Rashid Mamoon

Abstract

AbstractFog computing is an emerging research domain to provide computational services such as data transmission, application processing and storage mechanism. Fog computing consists of a set of fog server machines used to communicate with the mobile user in the edge network. Fog is introduced in cloud computing to meet data and communication needs for Internet of Things (IoT) devices. However, the vital challenges in this system are job scheduling, which is solved by examining the makespan, minimizing energy depletion and proper resource allocation. In this paper, we introduced a reinforced strategy Dynamic Opposition Learning based Social Spider Optimization (DOLSSO) Algorithm to enhance individual superiority and schedule workflow in Fog computing. The extensive experiments were conducted using the FogSim simulator to generate the dataset and an energy-efficient open-source tool utilized to model and simulate resource management in fog computing. The performance of the formulated model is ratified using two test cases. The proposed algorithm attained the optimized schedule with minimized cost function concerning the CPU processing period and assigned memory. Our simulation outcomes show the efficacy of the introduced technique in handling job scheduling issues, and the results are contrasted with five existing metaheuristic techniques. The results show that the proposed method achieves 10% - 15% better CPU utilization and 5%-10% less energy consumption than the other techniques.

Funder

Taif University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference43 articles.

1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur Gener Comput Syst 25(6):599–616

2. Eleyan A, Eleyan D (2015) Forensic process as a service (FPaaS) for cloud computing. In: Intelligence and security informatics conference (EISIC), 2015 European. IEEE, pp 157–160

3. The Network.Cisco Delivers Vision of Fog Computing to Accelerate Value from Billions of Connected Devices. http://newsroom.cisco.com/press-release-content?articleId=1334100.M

4. Deng R, Rongxing L, Lai C, Luan TH, Liang H (2016) Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J 3(6):1171–1181

5. Şahman MA (2021) A discrete spotted hyena optimizer for solving distributed job shop scheduling problems. Appl Soft Comput 106:107349

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3