Quantum support vector machine for forecasting house energy consumption: a comparative study with deep learning models

Author:

K Karan Kumar,Nutakki Mounica,Koduru Suprabhath,Mandava Srihari

Abstract

AbstractThe Smart Grid operates autonomously, facilitating the smooth integration of diverse power generation sources into the grid, thereby ensuring a continuous, reliable, and high-quality supply of electricity to end users. One key focus within the realm of smart grid applications is the Home Energy Management System (HEMS), which holds significant importance given the fluctuating availability of generation and the dynamic nature of loading conditions. This paper presents an overview of HEMS and the methodologies utilized for load forecasting. It introduces a novel approach employing Quantum Support Vector Machine (QSVM) for predicting periodic power consumption, leveraging the AMPD2 dataset. In the establishment of a microgrid, various factors such as energy consumption patterns of household appliances, solar irradiance, and overall load are taken into account in dataset creation. In the realm of load forecasting in Home Energy Management Systems (HEMS), the Quantum Support Vector Machine (QSVM) stands out from other methods due to its unique approach and capabilities. Unlike traditional forecasting methods, QSVM leverages quantum computing principles to handle complex and nonlinear electricity consumption patterns. QSVM demonstrates superior accuracy by effectively capturing intricate relationships within the data, leading to more precise predictions. Its ability to adapt to diverse datasets and produce significantly low error values, such as RMSE and MAE, showcases its efficiency in forecasting electricity load consumption in smart grids. Moreover, the QSVM model’s exceptional flexibility and performance, as evidenced by achieving an accuracy of 97.3% on challenging datasets like AMpds2, highlight its distinctive edge over conventional forecasting techniques, making it a promising solution for enhancing forecasting accuracy in HEMS.The article provides a brief summary of HEMS and load forecasting techniques, demonstrating and comparing them with deep learning models to showcase the efficacy of the proposed algorithms.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Energy Load Prediction of Industrial Parks Based on TCN-BiGRU-Attention;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3