A split-federated learning and edge-cloud based efficient and privacy-preserving large-scale item recommendation model

Author:

Qin Jiangcheng,Zhang Xueyuan,Liu Baisong,Qian Jiangbo

Abstract

AbstractThe combination of federated learning and recommender system aims to solve the privacy problems of recommendation through keeping user data locally at the client device during the model training session. However, most existing approaches rely on user devices to fully compute the deep model designed for the large-scale item recommendation; therefore, imposing high calculation and communication overheads on resource-constrained user devices. Consequently, achieving efficient federated recommendations across ubiquitous mobile devices remains an open research problem. To this end, in this paper we propose an efficient and privacy-preserving federated learning framework which is based on the cloud-edge collaboration for large-scale item recommendation called SpFedRec. In our method, to reduce the computation and communication cost of the federated two-tower model, a split learning approach is applied to migrate the item model from participants’ edge devices to the computationally powerful cloud side and compress item data while transmitting. Meanwhile, to enhance the feature representation, the Squeeze-and-Excitation network mechanism is used on the backbone model to optimize the perception of dominant features. Moreover, because the gradients transmitted contain private information about the user; therefore, we propose a multi-party circular secret-sharing chain based on secret sharing for better privacy protection. Extensive experiments using plausible assumptions on two real-world datasets demonstrate that our proposed method improves the average computation time and communication cost by 23% and 49%, respectively. Furthermore, the proposed model accomplishes comparable performance with other state-of-art federated recommendation models.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Resource-Efficient and Secure Federated Multimedia Recommendation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3