Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users

Author:

Zhu Chaoyang

Abstract

AbstractComputational intelligence techniques have emerged as a promising approach for diagnosing various medical conditions, including memory impairment. Increased abuse of psychoactive drugs poses a global public health burden, as repeated exposure to these substances can cause neurodegeneration, premature aging, and negatively affect memory impairment. Many studies in the literature relied on statistical studies, but they remained inaccurate. Some studies relied on physical data because the time factor was not considered, until Artificial Intelligence (AI) techniques came along that proved their worth in this diagnosis. The variable deep neural network method was used to adapt to the intermediate results and re-process the intermediate in case the result is undesirable. Computational intelligence was used in this study to classify a brain image from MRI or CT scans and to show the effectiveness of the dose ratio on health with treatment time, and to diagnose memory impairment in users of psychoactive substances. Understanding the neurotoxic profiles of psychoactive substances and the underlying pathways is hypothesized to be of great importance in improving the risk assessment and treatment of substance use disorders. The results proved the worth of the proposed method in terms of the accuracy of recognition rate as well as the possibility of diagnosis. It can be concluded that the diagnostic efficiency is increased by increasing the number of hidden layers in the neural network and controlling the weights and variables that control the deep learning algorithm. Thus, we conclude that good classification in this field may save human life or early detection of memory impairment.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3