A novel privacy-preserving speech recognition framework using bidirectional LSTM

Author:

Wang Qingren,Feng Chuankai,Xu YanORCID,Zhong Hong,Sheng Victor S.

Abstract

AbstractUtilizing speech as the transmission medium in Internet of things (IoTs) is an effective way to reduce latency while improving the efficiency of human-machine interaction. In the field of speech recognition, Recurrent Neural Network (RNN) has significant advantages to achieve accuracy improvement on speech recognition. However, some of RNN-based intelligence speech recognition applications are insufficient in the privacy-preserving of speech data, and others with privacy-preserving are time-consuming, especially about model training and speech recognition. Therefore, in this paper we propose a novel Privacy-preserving Speech Recognition framework using Bidirectional Long short-term memory neural network, namely PSRBL. On the one hand, PSRBL designs new functions to construct security activation functions by combing with an additive secret sharing protocol, namely a secure piecewise-linear Sigmoid and a secure piecewise-linear Tanh respectively, to achieve privacy-preserving of speech data during speech recognition process running on edge servers. On the other hand, in order to reduce the time spent on both the training and the recognition of the speech model while keeping high accuracy during speech recognition process, PSRBL first utilizes secure activation functions to refit original activation functions in the bidirectional Long Short-Term Memory neural network (LSTM), and then makes full use of the left and the right context information of speech data by employing bidirectional LSTM. Experiments conducted on the speech dataset TIMIT show that our framework PSRBL performs well. Specifically compared with the state-of-the-art ones, PSRBL significantly reduces the time consumption on both the training and the recognition of the speech model under the premise that PSRBL and the comparisons are consistent in the privacy-preserving of speech data.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3