A dockerized framework for hierarchical frequency-based document clustering on cloud computing infrastructures

Author:

Kotouza Maria Th.ORCID,Psomopoulos Fotis E.,Mitkas Pericles A.

Abstract

AbstractScalable big data analysis frameworks are of paramount importance in the modern web society, which is characterized by a huge number of resources, including electronic text documents. Document clustering is an important field in text mining and is commonly used for document organization, browsing, summarization and classification. Hierarchical clustering methods construct a hierarchy structure that, combined with the produced clusters, can be useful in managing documents, thus making the browsing and navigation process easier and quicker, and providing only relevant information to the users’ queries by leveraging the structure relationships. Nevertheless, the high computational cost and memory usage of baseline hierarchical clustering algorithms render them inappropriate for the vast number of documents that must be handled daily. In this paper, we propose a new scalable hierarchical clustering framework, which uses the frequency of the topics in the documents to overcome these limitations. Our work consists of a binary tree construction algorithm that creates a hierarchy of the documents using three metrics (Identity, Entropy, Bin Similarity), and a branch breaking algorithm which composes the final clusters by applying thresholds to each branch of the tree. The clustering algorithm is followed by a meta-clustering module which makes use of graph theory to obtain insights in the leaf clusters’ connections. The feature vectors representing each document derive from topic modeling. At the implementation level, the clustering method has been dockerized in order to facilitate its deployment on cloud computing infrastructures. Finally, the proposed framework is evaluated on several datasets of varying size and content, achieving significant reduction in both memory consumption and computational time over existing hierarchical clustering algorithms. The experiments also include performance testing on cloud resources using different setups and the results are promising.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3