FSPLO: a fast sensor placement location optimization method for cloud-aided inspection of smart buildings

Author:

Yang Min,Ge Chengmin,Zhao Xiaoran,Kou Huaizhen

Abstract

AbstractWith the awakening of health awareness, people are raising a series of health-related requirements for the buildings they live in, with a view to improving their living conditions. In this context, BIM (Building Information Modeling) makes full use of cutting-edge theories and technologies in many domains such as health, environment, and information technology to provide a new way for engineers to design and build various healthy and green buildings. Specifically, sensors are playing an important role in achieving smart building goals by monitoring the surroundings of buildings, objects and people with the help of cloud computing technology. In addition, it is necessary to quickly determine the optimal sensor placement to save energy and minimize the number of sensors for a building, which is a de-trial task for the cloud platform due to the limited number of sensors available and massive candidate locations for each sensor. In this paper, we propose a Fast Sensor Placement Location Optimization approach (FSPLO) to solve the BIM problem in cloud-aided smart buildings. In particular, we quickly filter out the repeated candidate locations of sensors in FSPLO using Locality Sensitive Hashing (LSH) techniques to maintain only a small number of optimized locations for deploying sensors around buildings. In this way, we can significantly reduce the number of sensors used for health and green buildings. Finally, a set of simulation experiments demonstrates the excellent performance of our proposed FSPLO method.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3