Detection of cotton leaf curl disease’s susceptibility scale level based on deep learning

Author:

Nazeer Rubaina,Ali Sajid,Hu Zhihua,Ansari Ghulam Jillani,Al-Razgan Muna,Awwad Emad Mahrous,Ghadi Yazeed Yasin

Abstract

AbstractCotton, a crucial cash crop in Pakistan, faces persistent threats from diseases, notably the Cotton Leaf Curl Virus (CLCuV). Detecting these diseases accurately and early is vital for effective management. This paper offers a comprehensive account of the process involved in collecting, preprocessing, and analyzing an extensive dataset of cotton leaf images. The primary aim of this dataset is to support automated disease detection systems. We delve into the data collection procedure, distribution of the dataset, preprocessing stages, feature extraction methods, and potential applications. Furthermore, we present the preliminary findings of our analyses and emphasize the significance of such datasets in advancing agricultural technology. The impact of these factors on plant growth is significant, but the intrusion of plant diseases, such as Cotton Leaf Curl Disease (CLCuD) caused by the Cotton Leaf Curl Gemini Virus (CLCuV), poses a substantial threat to cotton yield. Identifying CLCuD promptly, especially in areas lacking critical infrastructure, remains a formidable challenge. Despite the substantial research dedicated to cotton leaf diseases in agriculture, deep learning technology continues to play a vital role across various sectors. In this study, we harness the power of two deep learning models, specifically the Convolutional Neural Network (CNN). We evaluate these models using two distinct datasets: one from the publicly available Kaggle dataset and the other from our proprietary collection, encompassing a total of 1349 images capturing both healthy and disease-affected cotton leaves. Our meticulously curated dataset is categorized into five groups: Healthy, Fully Susceptible, Partially Susceptible, Fully Resistant, and Partially Resistant. Agricultural experts annotated our dataset based on their expertise in identifying abnormal growth patterns and appearances. Data augmentation enhances the precision of model performance, with deep features extracted to support both training and testing efforts. Notably, the CNN model outperforms other models, achieving an impressive accuracy rate of 99% when tested against our proprietary dataset.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3