Latency and resource consumption analysis for serverless edge analytics

Author:

Moreno-Vozmediano Rafael,Huedo Eduardo,Montero Rubén S.,Llorente Ignacio M.

Abstract

AbstractThe serverless computing model, implemented by Function as a Service (FaaS) platforms, can offer several advantages for the deployment of data analytics solutions in IoT environments, such as agile and on-demand resource provisioning, automatic scaling, high elasticity, infrastructure management abstraction, and a fine-grained cost model. However, in the case of applications with strict latency requirements, the cold start problem in FaaS platforms can represent an important drawback. The most common techniques to alleviate this problem, mainly based on instance pre-warming and instance reusing mechanisms, are usually not well adapted to different application profiles and, in general, can entail an extra expense of resources. In this work, we analyze the effect of instance pre-warming and instance reusing on both application latency (response time) and resource consumption, for a typical data analytics use case (a machine learning application for image classification) with different input data patterns. Furthermore, we propose extending the classical centralized cloud-based serverless FaaS platform to a two-tier distributed edge-cloud platform to bring the platform closer to the data source and reduce network latencies.

Funder

Ministerio de Ciencia, Innovación y Universidades

Comunidad de Madrid,Spain

European Union

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Low-Latency Edge-Cloud Serverless Computing Framework with a Multi-Armed Bandit Scheduler;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

2. A Review: Cold Start Latency in Serverless Computing;2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT);2024-04-19

3. Object Recognition Interface in Vehicles Using Google ML;2024 7th International Conference on Information and Computer Technologies (ICICT);2024-03-15

4. Taming Serverless Cold Start of Cloud Model Inference with Edge Computing;IEEE Transactions on Mobile Computing;2024

5. Using Energy Consumption for Self-adaptation in FaaS;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3