Improving cloud efficiency through optimized resource allocation technique for load balancing using LSTM machine learning algorithm

Author:

Ashawa Moses,Douglas Oyakhire,Osamor Jude,Jackie Riley

Abstract

AbstractAllocating resources is crucial in large-scale distributed computing, as networks of computers tackle difficult optimization problems. Within the scope of this discussion, the objective of resource allocation is to achieve maximum overall computing efficiency or throughput. Cloud computing is not the same as grid computing, which is a version of distributed computing in which physically separate clusters are networked and made accessible to the public. Because of the wide variety of application workloads, allocating multiple virtualized information and communication technology resources within a cloud computing paradigm can be a problematic challenge. This research focused on the implementation of an application of the LSTM algorithm which provided an intuitive dynamic resource allocation system that analyses the heuristics application resource utilization to ascertain the best extra resource to provide for that application. The software solution was simulated in near real-time, and the resources allocated by the trained LSTM model. There was a discussion on the benefits of integrating these with dynamic routing algorithms, designed specifically for cloud data centre traffic. Both Long-Short Term Memory and Monte Carlo Tree Search have been investigated, and their various efficiencies have been compared with one another. Consistent traffic patterns throughout the simulation were shown to improve MCTS performance. A situation like this is usually impossible to put into practice due to the rapidity with which traffic patterns can shift. On the other hand, it was verified that by employing LSTM, this problem could be solved, and an acceptable SLA was achieved. The proposed model is compared with other load balancing techniques for the optimization of resource allocation. Based on the result, the proposed model shows the accuracy rate is enhanced by approximately 10–15% as compared with other models. The result of the proposed model reduces the error percent rate of the traffic load average request blocking probability by approximately 9.5–10.2% as compared to other different models. This means that the proposed technique improves network usage by taking less amount of time due, to memory, and central processing unit due to a good predictive approach compared to other models. In future research, we implement cloud data centre employing various heuristics and machine learning approaches for load balancing of energy cloud using firefly algorithms.

Funder

Glasgow Caledonian University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic microservice placement in multi-tier Fog networks;Internet of Things;2024-07

2. CloudAIBus: a testbed for AI based cloud computing environments;Cluster Computing;2024-06-06

3. Deciphering the Realities of Deep Learning in Business Analytics;Advances in Business Information Systems and Analytics;2024-04-15

4. Efficient resource allocation in heterogeneous clouds: genetic water evaporation optimization for task scheduling;Signal, Image and Video Processing;2024-03-21

5. Investigating Hamiltonian Monte Carlo for Real-time Network Traffic Prediction;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3