Generic SDE and GA-based workload modeling for cloud systems

Author:

St-Onge CédricORCID,Benmakrelouf Souhila,Kara Nadjia,Tout Hanine,Edstrom Claes,Rabipour Rafi

Abstract

AbstractWorkload models are typically built based on user and application behavior in a system, limiting them to specific domains. Undoubtedly, such a practice creates a dilemma in a cloud computing (cloud) environment, where a wide range of heterogeneous applications are running and many users have access to these resources. The workload model in such an infrastructure must adapt to the evolution of the system configuration parameters, such as job load fluctuation. The aim of this work is to propose an approach that generates generic workload models (1) which are independent of user behavior and the applications running in the system, and can fit any workload domain and type, (2) model sharp workload variations that are most likely to appear in cloud environments, and (3) with high degree of fidelity with respect to observed data, within a short execution time. We propose two approaches for workload estimation, the first being a Hull-White and Genetic Algorithm (GA) combination, while the second is a Support Vector Regression (SVR) and Kalman-filter combination. Thorough experiments are conducted on real CPU and throughput datasets from virtualized IP Multimedia Subsystem (IMS), Web and cloud environments to study the efficiency of both propositions. The results show a higher accuracy for the Hull-White-GA approach with marginal overhead over the SVR-Kalman-Filter combination.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud Resources Forecasting based on Server Workload using ML Techniques;2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2023-01-05

2. Timed Colored Petri Net-Based Event Generators for Web Systems Simulation;Applied Sciences;2022-12-03

3. Unsupervised Modeling of Workloads as an Enabler for Supervised Ensemble-based Prediction of Resource Demands on a Cloud;Advances in Data Computing, Communication and Security;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3