Investigating performance metrics for container-based HPC environments using x86 and OpenPOWER systems

Author:

Kuity AnimeshORCID,Peddoju Sateesh K.

Abstract

AbstractContainer-based High-Performance Computing (HPC) is changing the way computation is performed and reproduced without sacrificing the raw performance compared to hypervisor-assisted virtualization technologies. It primarily supports continuously evolving data-intensive applications such as computational fluid dynamics, seismic tomography, molecular biology, and Proteomics. OpenPOWER systems, unlike the x86 systems, use the POWER-compliant processor to exploit instruction-level and thread-level parallelism heavily. In our previous work, we designed and developed a Containerized HPC environment (cHPCe) from the scratch using Linux namespaces on OpenPOWER systems. This paper aims to provide an in-depth performance analysis of the Containerized HPC environment using x86 systems and Containerized HPC environment using the OpenPOWER system, on systems’ subcomponents, processor, memory, interconnect, and IO. This sub-component analysis provides an insight on several aspects of the system performance. To the best of our knowledge, no research has been reported yet for such a comparative analysis that designs cHPCe for both x86 and OpenPOWER systems. The performance of the developed cHPCe is compared with BareMetals, and VMs using the benchmarks HPCC, and IOZone. Our experimental results achieve 0.13% less compute performance penalty at its peak performance on cHPCe compared to the BareMetal-based solution for x86 systems. In contrast, a VM-based solution introduces an overhead of 20% and 4.83% in x86 and OpenPOWER cases, respectively. Moreover, the x86 and OpenPOWER systems observe inconsistent behavior for memory performance with a worst-case penalty of 9.68% and 6.64% compared to achieved peak performance, respectively. However, similar behavior is reported for cHPCe with an overhead of less than 3% and 2% in the worst case for the latency and bandwidth, respectively, compared to the BareMetal for network and disk performance. Our experimental results reveal that the containerized OpenPOWER environment represents a viable alternative to the counterpart x86 environment for the HPC solution.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3