Reinforcement learning based task scheduling for environmentally sustainable federated cloud computing

Author:

Wang Zhibao,Chen Shuaijun,Bai Lu,Gao Juntao,Tao Jinhua,Bond Raymond R.,Mulvenna Maurice D.

Abstract

AbstractThe significant energy consumption within data centers is an essential contributor to global energy consumption and carbon emissions. Therefore, reducing energy consumption and carbon emissions in data centers plays a crucial role in sustainable development. Traditional cloud computing has reached a bottleneck, primarily due to high energy consumption. The emerging federated cloud approach can reduce the energy consumption and carbon emissions of cloud data centers by leveraging the geographical differences of multiple cloud data centers in a federated cloud. In this paper, we propose Eco-friendly Reinforcement Learning in Federated Cloud (ERLFC), a framework that uses reinforcement learning for task scheduling in a federated cloud environment. ERLFC aims to intelligently consider the state of each data center and effectively harness the variations in energy and carbon emission ratios across geographically distributed cloud data centers in the federated cloud. We build ERLFC using Actor-Critic algorithm, which select the appropriate data center to assign a task based on various factors such as energy consumption, cooling method, waiting time of the task, energy type, emission ratio, and total energy consumption of the current cloud data center and the details of the next task. To demonstrate the effectiveness of ERLFC, we conducted simulations based on real-world task execution data, and the results show that ERLFC can effectively reduce energy consumption and emissions during task execution. In comparison to Round Robin, Random, SO, and GJO algorithms, ERLFC achieves respective reductions of 1.09, 1.08, 1.21, and 1.26 times in terms of energy saving and emission reduction.

Funder

TUOHAI special project 2020 from Bohai Rim Energy Research Institute of Northeast Petroleum University

Project of Excellent and Middle-aged Scientific Research Innovation Team of Northeast Petroleum University

Heilongjiang Province Higher Education Teaching Reform Project

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3