Efficient 3D object recognition in mobile edge environment

Author:

Song Mofei,Guo Qi

Abstract

Abstract3D object recognition has great research and application value in the fields of automatic drive, virtual reality, and commercial manufacturing. Although various deep models have been exploited and achieved remarkable results for 3D object recognition, their computational cost is too high for most mobile applications. This paper combines edge computing and 3D object recognition into a powerful and efficient framework. It consists of a cloud-based rendering stage and a terminal-based recognition stage. In the first stage, inspired by the cloud-based rendering technique, we upload the 3D object data from the mobile device to the edge cloud server for multi-view rendering. The rendering stage utilizes the powerful computing resource in the edge cloud server to generate multiple view images of the given 3D object from different views by parallel high-quality rendering. During the terminal-based recognition stage, we integrate a lightweight CNN architecture and a neural network quantization technique into a 3D object recognition model based on the multiple images rendered in the edge cloud server, which can be executed fast in the mobile device. To reduce the cost of network training, we propose a novel semi-supervised 3D deep learning method with fewer labeled samples. Experiments demonstrate that our method achieves competitive performance compared to the state-of-the-art methods with low latency running in the mobile edge environment.

Funder

National Natural Science Foundation of China

the Open Research Project of State Key Laboratory of Novel Software Technology

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New indicators and standards for measuring of the end mill's helical groove by image processing;Optical Metrology and Inspection for Industrial Applications X;2023-11-27

2. A Survey on Smart Intelligent Computing and Its Applications;Intelligent Computing and Optimization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3