Time series forecasting model for non-stationary series pattern extraction using deep learning and GARCH modeling

Author:

Han Huimin,Liu Zehua,Barrios Barrios Mauricio,Li Jiuhao,Zeng Zhixiong,Sarhan Nadia,Awwad Emad Mahrous

Abstract

AbstractThis paper presents a novel approach to time series forecasting, an area of significant importance across diverse fields such as finance, meteorology, and industrial production. Time series data, characterized by its complexity involving trends, cyclicality, and random fluctuations, necessitates sophisticated methods for accurate forecasting. Traditional forecasting methods, while valuable, often struggle with the non-linear and non-stationary nature of time series data. To address this challenge, we propose an innovative model that combines signal decomposition and deep learning techniques. Our model employs Generalized Autoregressive Conditional Heteroskedasticity (GARCH) for learning the volatility in time series changes, followed by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for data decomposition, significantly simplifying data complexity. We then apply Graph Convolutional Networks (GCN) to effectively learn the features of the decomposed data. The integration of these advanced techniques enables our model to fully capture and analyze the intricate features of time series data at various interval lengths. We have evaluated our model on multiple typical time-series datasets, demonstrating its enhanced predictive accuracy and stability compared to traditional methods. This research not only contributes to the field of time series forecasting but also opens avenues for the application of hybrid models in big data analysis, particularly in understanding and predicting the evolution of complex systems.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3