Privacy-preserving federated learning based on partial low-quality data

Author:

Wang Huiyong,Wang Qi,Ding Yong,Tang Shijie,Wang Yujue

Abstract

AbstractTraditional machine learning requires collecting data from participants for training, which may lead to malicious acquisition of privacy in participants’ data. Federated learning provides a method to protect participants’ data privacy by transferring the training process from a centralized server to terminal devices. However, the server may still obtain participants’ privacy through inference attacks and other methods. In addition, the data provided by participants varies in quality, and the excessive involvement of low-quality data in the training process can render the model unusable, which is an important issue in current mainstream federated learning. To address the aforementioned issues, this paper proposes a Privacy Preserving Federated Learning Scheme with Partial Low-Quality Data (PPFL-LQDP). It can achieve good training results while allowing participants to utilize partial low-quality data, thereby enhancing the privacy and security of the federated learning scheme. Specifically, we use a distributed Paillier cryptographic mechanism to protect the privacy and security of participants’ data during the Federated training process. Additionally, we construct composite evaluation values for the data held by participants to reduce the involvement of low-quality data, thereby minimizing the negative impact of such data on the model. Through experiments on the MNIST dataset, we demonstrate that this scheme can complete the model training of federated learning with the participation of partial low-quality data, while effectively protecting the security and privacy of participants’ data. Comparisons with related schemes also show that our scheme has good overall performance.

Funder

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3