A hybrid attention and time series network for enterprise sales forecasting under digital management and edge computing

Author:

Zhang Xi,Kim Taesun

Abstract

AbstractEnterprises have both new opportunities and new challenges as a result of the rapid advancements in information technology that have accompanied the age of economic globalization. With the growth of internet of Things devices, data sizes have significantly increased. Further, the traditional cloud platform has been enriched with edge computing so that the huge data can be processed where it is collected. Therefore, businesses must adapt to new size requirements and rising standards for technical content. Forecasting corporate sales has emerged as a hot topic in the field of digital management. To successfully direct the future production and existence of enterprises, time series forecasting is of utmost importance and value. This is because it makes use of already-existing data to get the best predicting result. This work proposes a combination of enterprise sales forecasting from the perspective of digital management and neural networks, and proposes a network HATT-CNN-BiLSTM model for enterprise sales forecasting. First, this work combines multi-scale CNN (MSCNN) with improved BiLSTM (IBiLSTM) model. The MSCNN is utilized to extract spatial features with different scale, and it is often impossible to effectively explore the rules of time series features, and the processing of time series data is the strength of the LSTM network. Moreover, the IBiLSTM model can explore time series features in both directions, and therefore more useful information can be obtained. The MSCNN-IBiLSTM model, which is composed of MSCNN and IBiLSTM, can take advantage of strengths and avoid weaknesses, and give full play to the roles of the two models in different fields. Second, this work proposes a hybrid attention mechanism that combines self-attention, channel attention, and spatial attention. It enhances features extracted by MSCNN-IBiLSTM through a hybrid attention to build HATT-MSCNN-IBiLSTM network, which can extract more discriminative features. Third, this work conducts comprehensive and systematic experiments on HATT- MSCNN-IBiLSTM to verify feasibility of the proposed method. The proposed model is implemented over an edge computing platform that increases the model training speed and improve the response time.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3