A deep reinforcement learning assisted task offloading and resource allocation approach towards self-driving object detection

Author:

Nie Lili,Wang Huiqiang,Feng Guangsheng,Sun Jiayu,Lv Hongwu,Cui Hang

Abstract

AbstractWith the development of communication technology and mobile edge computing (MEC), self-driving has received more and more research interests. However, most object detection tasks for self-driving vehicles are still performed at vehicle terminals, which often requires a trade-off between detection accuracy and speed. To achieve efficient object detection without sacrificing accuracy, we propose an end–edge collaboration object detection approach based on Deep Reinforcement Learning (DRL) with a task prioritization mechanism. We use a time utility function to measure the efficiency of object detection task and aim to provide an online approach to maximize the average sum of the time utilities in all slots. Since this is an NP-hard mixed-integer nonlinear programming (MINLP) problem, we propose an online approach for task offloading and resource allocation based on Deep Reinforcement learning and Piecewise Linearization (DRPL). A deep neural network (DNN) is implemented as a flexible solution for learning offloading strategies based on road traffic conditions and wireless network environment, which can significantly reduce computational complexity. In addition, to accelerate DRPL network convergence, DNN outputs are grouped by in-vehicle cameras to form offloading strategies via permutation. Numerical results show that the DRPL scheme is at least 10% more effective and superior in terms of time utility compared to several representative offloading schemes for various vehicle local computing resource scenarios.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3