Adaptive device sampling and deadline determination for cloud-based heterogeneous federated learning

Author:

Zhang Deyu,Sun Wang,Zheng Zi-Ang,Chen Wenxin,He Shiwen

Abstract

AbstractAs a new approach to machine learning, Federated learning enables distributned traiing on edge devices and aggregates local models into a global model. The edge devices that participate in federated learning are highly heterogeneous in terms of computing power, device state, and data distribution, making it challenging to converge models efficiently. In this paper, we propose FedState, which is an adaptive device sampling and deadline determination technique for cloud-based heterogeneous federated learning. Specifically, we consider the cloud as a central server that orchestrates federated learning on a large pool of edge devices. To improve the efficiency of model convergence in heterogeneous federated learning, our approach adaptively samples devices to join each round of training and determines the deadline for result submission based on device state. We analyze existing device usage traces to build device state models in different scenarios and design a dynamic importance measurement mechanism based on device availability, data utility, and computing power. We also propose a deadline determination module that dynamically sets the deadline according to the availability of all sampled devices, local training time, and communication time, enabling more clients to submit local models more efficiently. Due to the variability of device state, we design an experience-driven algorithm based on Deep Reinforcement Learning (DRL) that can dynamically adjust our sampling and deadline policies according to the current environment state. We demonstrate the effectiveness of our approach through a series of experiments with the FMNIST dataset and show that our method outperforms current state-of-the-art approaches in terms of model accuracy and convergence speed.

Funder

nsfc

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3