Predicting the total Unified Parkinson’s Disease Rating Scale (UPDRS) based on ML techniques and cloud-based update

Author:

Hamzehei Sahand,Akbarzadeh Omid,Attar Hani,Rezaee Khosro,Fasihihour Nazanin,Khosravi Mohammad R.

Abstract

AbstractNowadays, smart health technologies are used in different life and environmental areas, such as smart life, healthcare, cognitive smart cities, and social systems. Intelligent, reliable, and ubiquitous healthcare systems are a part of the modern developing technology that should be more seriously considered. Data collection through different ways, such as the Internet of things (IoT)-assisted sensors, enables physicians to predict, prevent and treat diseases. Machine Learning (ML) algorithms may lead to higher accuracy in medical diagnosis/prognosis based on health data provided by the sensors to help physicians in tracking symptom significance and treatment steps. In this study, we applied four ML methods to the data on Parkinson’s disease to assess the methods’ performance and identify the essential features that may be used to predict the total Unified Parkinson’s disease Rating Scale (UPDRS). Since accessibility and high-performance decision-making are so vital for updating physicians and supporting IoT nodes (e.g., wearable sensors), all the data is stored, updated as rule-based, and protected in the cloud. Moreover, by assigning more computational equipment and memory in use, cloud computing makes it possible to reduce the time complexity of the training phase of ML algorithms in the cases we want to create a complete structure of cloud/edge architecture. In this situation, it is possible to investigate the approaches with varying iterations without concern for system configuration, temporal complexity, and real-time performance. Analyzing the coefficient of determination and Mean Square Error (MSE) reveals that the outcomes of the applied methods are mostly at an acceptable performance level. Moreover, the algorithm’s estimated weight indicates that Motor UPDRS is the most significant predictor of Total UPDRS.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Impact and Integration of Cloud Computing for Enhanced Patient Care and Operational Efficiency;Advances in Medical Technologies and Clinical Practice;2024-06-21

2. Utilizing Keras Model for Dynamic Drawing Analysis in Predicting Parkinson’s Disease through Spiral and Wave Patterns;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

3. Predicting Disease Severity in Patients with Impaired Muscle Control Using Voice Parameters and Linear Regression;2024 10th International Conference on Artificial Intelligence and Robotics (QICAR);2024-02-29

4. Predictive Modeling of Chronic Kidney Disease Progression Using Longitudinal Clinical Data and Deep Learning Techniques;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27

5. A Comprehensive Simulation of Electric Vehicle Energy Consumption: Incorporating Route Planning and Machine Learning-Based Predictions;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3