Information-theoretic secure rational secret sharing in asynchronous networks for untrusted cloud environments

Author:

Hsu Chingfang,Harn Lein,Xia Zhe,Bai Linyan,Zhang Ze

Abstract

AbstractToday, cloud storage services increased the popular for data storage in the cloud and retrieve from any location without any time limitations. One of the most important demands required in cloud is secured data transmission in un-trusted cloud applications. Particularly, secure and efficient multiparty communications in Untrusted Cloud Environments (UCE) attract widespread attentions. The equipment used in UCE have the particularity of being heterogeneous and UCE communication environment are asynchronous networks in which multiple users cannot transmit their messages simultaneously. How to ensure secure communication between these heterogeneous intelligent devices is a major challenge for multiparty communication applied in UCE. In such an asynchronous environment, the asynchronous transmission can cause security problems in cryptographic functions. Therefore, how to implement rational secret sharing (RSS) in an asynchronous model of the UCE networks has become a burning research topic. The RSS refers to finding a solution composed of strategies to encourage players in the secret reconstruction to act honestly even players are rational to act for their own interest. If each player plays the game for the best response to the best response of other players, the game is in Nash equilibrium. The objective of an RSS is to achieve the Nash equilibrium state corresponding to the global optima. In this paper, we propose an information-theoretic secure RSS in asynchronous model for UCE. Our design uses Petersen’s VSS to allow every player to divide his share into multiple pieces for other players. Then, shares can be revealed asynchronously. If any player acts maliciously, his share can be recovered by other players. This feature can encourage players to act honestly since any malicious action (i.e., either revealing a fake share or refusing to release one) is useless. Our scheme is practically valuable for secure group-oriented applications in UCE.

Funder

National Nature Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defensive strategies against PCC attacks based on ideal (t,n)-secret sharing scheme;Journal of King Saud University - Computer and Information Sciences;2023-10

2. Secure gene profile data processing using lightweight cryptography and blockchain;Cluster Computing;2023-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3