Deep Reinforcement Learning techniques for dynamic task offloading in the 5G edge-cloud continuum

Author:

Nieto Gorka,de la Iglesia Idoia,Lopez-Novoa Unai,Perfecto Cristina

Abstract

AbstractThe integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC) paradigm has been a good approach for tasks where latency is not critical, but it is not useful when latency matters, so Multi-access Edge Computing (MEC) can be of use. In this work, we propose a distributed Deep Reinforcement Learning (DRL) tool to optimize the binary task offloading decision, this is, the independent decision of where to execute each computing task, depending on many factors. The optimization goal in this work is to maximize the Quality-of-Experience (QoE) when performing tasks, which is defined as a metric related to the battery level of the UE, but subject to satisfying tasks’ latency requirements. This distributed DRL approach, specifically an Actor-Critic (AC) algorithm running on each User Equipment (UE), is evaluated through the simulation of two distinct scenarios and outperforms other analyzed baselines in terms of QoE values and/or energy consumption in dynamic environments, also demonstrating that decisions need to be adapted to the environment’s evolution.

Funder

Basque Government

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. 3GPP (2020) Study on channel model for frequencies from 0.5 to 100 ghz. Technical report (tr), 3rd Generation Partnership Project (3GPP). version 16.1.0. https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf

2. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 26 Mar 2024

3. Abdullaev I, Prodanova N, Bhaskar KA, Lydia EL, Kadry S, Kim J (2023) Task offloading and resource allocation in iot based mobile edge computing using deep learning. Comput Mater Continua 76(2). https://doi.org/10.32604/cmc.2023.038417

4. Al Aidaros O, Kardjadja Y, Bouida Z, Ibnkahla M (2023) Energy and time-effective computation offloading for edge computing-enabled iot networks. In: 2023 IEEE Sensors Applications Symposium (SAS), pp 1–6. https://doi.org/10.1109/SAS58821.2023.10254051

5. Avgeris M, Mechennef M, Leivadeas A, Lambadaris I (2023) A two-stage cooperative reinforcement learning scheme for energy-aware computational offloading. In: 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), pp 179–184. https://doi.org/10.1109/HPSR57248.2023.10147932

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3