A survey of Kubernetes scheduling algorithms

Author:

Senjab Khaldoun,Abbas Sohail,Ahmed Naveed,Khan Atta ur Rehman

Abstract

AbstractAs cloud services expand, the need to improve the performance of data center infrastructure becomes more important. High-performance computing, advanced networking solutions, and resource optimization strategies can help data centers maintain the speed and efficiency necessary to provide high-quality cloud services. Running containerized applications is one such optimization strategy, offering benefits such as improved portability, enhanced security, better resource utilization, faster deployment and scaling, and improved integration and interoperability. These benefits can help organizations improve their application deployment and management, enabling them to respond more quickly and effectively to dynamic business needs. Kubernetes is a container orchestration system designed to automate the deployment, scaling, and management of containerized applications. One of its key features is the ability to schedule the deployment and execution of containers across a cluster of nodes using a scheduling algorithm. This algorithm determines the best placement of containers on the available nodes in the cluster. In this paper, we provide a comprehensive review of various scheduling algorithms in the context of Kubernetes. We characterize and group them into four sub-categories: generic scheduling, multi-objective optimization-based scheduling, AI-focused scheduling, and autoscaling enabled scheduling, and identify gaps and issues that require further research.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent architecture and platforms for private edge cloud systems: A review;Future Generation Computer Systems;2024-11

2. On the Optimization of Kubernetes toward the Enhancement of Cloud Computing;Mathematics;2024-08-10

3. A Framework for Dynamic Dependency-based Service Placement in the Cloud-Edge Continuum;2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW);2024-07-23

4. Efficient Resource Allocation in Kubernetes Using Machine Learning;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-23

5. Telemetry-Driven Microservices Orchestration in Cloud-Edge Environments;2024 IEEE 17th International Conference on Cloud Computing (CLOUD);2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3