Fog computing application of cyber-physical models of IoT devices with symbolic approximation algorithms

Author:

Choi Deok-KeeORCID

Abstract

AbstractSmart manufacturing systems based on cloud computing deal with large amounts of data for various IoT devices, resulting in several challenges, including high latency and high bandwidth usage. Since fog computing physically close to IoT devices can alleviate these issues, much attention has recently been focused on this area. Fans are nearly ubiquitous in manufacturing sites for cooling and ventilation purposes. Thereby, we built a fan system with an accelerometer installed and monitored the operating state of the fan. We analyzed time-series data transmitted from the accelerometer. We applied machine learning under streaming data analytics at the fog computing level to create a fan’s cyber-physical model (CPM). This work employed the symbolic approximation algorithm to approximate the time series data as symbols of arbitrary length. We compared the performance of CPMs made with five time-series classification (TSC) algorithms to monitor the state of the fan for anomalies in real time. The CPM made with the BOSS VS algorithm, a symbol approximation algorithm, accurately determined the current state of the fan within a fog computing environment, achieving approximately 98% accuracy at a 95% confidence level. Furthermore, we conducted a posthoc analysis, running statistical rigor tests on experimental data and simulation results. The workflow proposed in this work would be expected to be utilized for various IoT devices in smart manufacturing systems.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time Series Compression for IoT: A Systematic Literature Review;Wireless Communications and Mobile Computing;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3