Deep learning approach to security enforcement in cloud workflow orchestration

Author:

El-Kassabi Hadeel T.,Serhani Mohamed Adel,Masud Mohammad M.,Shuaib Khaled,Khalil Khaled

Abstract

AbstractSupporting security and data privacy in cloud workflows has attracted significant research attention. For example, private patients’ data managed by a workflow deployed on the cloud need to be protected, and communication of such data across multiple stakeholders should also be secured. In general, security threats in cloud environments have been studied extensively. Such threats include data breaches, data loss, denial of service, service rejection, and malicious insiders generated from issues such as multi-tenancy, loss of control over data and trust. Supporting the security of a cloud workflow deployed and executed over a dynamic environment, across different platforms, involving different stakeholders, and dynamic data is a difficult task and is the sole responsibility of cloud providers. Therefore, in this paper, we propose an architecture and a formal model for security enforcement in cloud workflow orchestration. The proposed architecture emphasizes monitoring cloud resources, workflow tasks, and the data to detect and predict anomalies in cloud workflow orchestration using a multi-modal approach that combines deep learning, one class classification, and clustering. It also features an adaptation scheme to cope with anomalies and mitigate their effect on the workflow cloud performance. Our prediction model captures unsupervised static and dynamic features as well as reduces the data dimensionality, which leads to better characterization of various cloud workflow tasks, and thus provides better prediction of potential attacks. We conduct a set of experiments to evaluate the proposed anomaly detection, prediction, and adaptation schemes using a real COVID-19 dataset of patient health records. The results of the training and prediction experiments show high anomaly prediction accuracy in terms of precision, recall, and F1 scores. Other experimental results maintained a high execution performance of the cloud workflow after applying adaptation strategy to respond to some detected anomalies. The experiments demonstrate how the proposed architecture prevents unnecessary wastage of resources due to anomaly detection and prediction.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3