CNN based lane detection with instance segmentation in edge-cloud computing

Author:

Wang Wei,Lin Hui,Wang Junshu

Abstract

AbstractAt present, the number of vehicle owners is increasing, and the cars with autonomous driving functions have attracted more and more attention. The lane detection combined with cloud computing can effectively solve the drawbacks of traditional lane detection relying on feature extraction and high definition, but it also faces the problem of excessive calculation. At the same time, cloud data processing combined with edge computing can effectively reduce the computing load of the central nodes. The traditional lane detection method is improved, and the current popular convolutional neural network (CNN) is used to build a dual model based on instance segmentation. In the image acquisition and processing processes, the distributed computing architecture provided by edge-cloud computing is used to improve data processing efficiency. The lane fitting process generates a variable matrix to achieve effective detection in the scenario of slope change, which improves the real-time performance of lane detection. The method proposed in this paper has achieved good recognition results for lanes in different scenarios, and the lane recognition efficiency is much better than other lane recognition models.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective lane detection on complex roads with convolutional attention mechanism in autonomous vehicles;Scientific Reports;2024-08-19

2. Lane Line and Object Detection Using Yolo v3;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-11

3. PMNet: a multi-branch and multi-scale semantic segmentation approach to water extraction from high-resolution remote sensing images with edge-cloud computing;Journal of Cloud Computing;2024-03-27

4. Deep Learning-Based AI model for Road Detection;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

5. Lane Detection in Autonomous Driving: A Comprehensive Survey of Methods and Performance;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3